资源类型

期刊论文 232

年份

2023 28

2022 26

2021 21

2020 13

2019 24

2018 9

2017 9

2016 12

2015 10

2014 8

2013 7

2012 5

2011 5

2010 8

2009 7

2008 15

2007 6

2006 5

2004 1

2002 1

展开 ︾

关键词

复合材料 5

PP 2

力学性能 2

复合镀层 2

电沉积 2

组合梁 2

BMI树脂 1

CCS 1

CO2分离 1

EFP 1

HDPE 1

WPC 1

Zn-Fe-SiO2 1

丁醇 1

买得起复合材料 1

亚铁氰化铜 1

代数推理 1

传导机理 1

低合金高强度钢 1

展开 ︾

检索范围:

排序: 展示方式:

Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite

Yan Zhang,Pingqiang Gao,Lin Zhao,Yizhong Chen

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 147-161 doi: 10.1007/s11705-015-1546-y

摘要: A novel hydrogel composite was prepared via inverse suspension polymerization using starch, acrylic acid and organo-mordenite micropowder with the crosslinker, , ′-methylenebisacrylamide and the initiator, potassium persulfate. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy confirmed that the acrylic acid was grafted onto the backbone of the corn starch, that the organo-mordenite participated in the polymerization, and that the addition of organo-mordenite improved the surface morphology of the hydrogel composite. The swelling capacity of the hydrogel composite was evaluated in distilled water, and solutions with different pH values, and various salt solutions. It was found that the incorporation of 10 wt-% organo-mordenite enhanced the water absorbency by 144% (from 268 to 655 g·g ) and swelling was extremely sensitive to the pH values, the concentration of the salt solution and cation type. Swelling kinetics and water diffusion mechanism of the hydrogel composite in distilled water were also discussed. Moreover, the hydrogel composite showed excellent reversibility of water absorption even after five repetitive cycles and the hydrogel composite exhibited significant environmental-responsiveness by changing the swelling medium from distilled water to 0.1 mol·L NaCl solution. In addition, the loading and release of urea by the hydrogel composite were tested and the nutrient-slow-release capability of this material was found to be suitable for many potential applications.

关键词: hydrogel composite     environmental-responsiveness     organo-mordenite     starch     acrylic acid    

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

《能源前沿(英文)》 2021年 第15卷 第3期   页码 577-595 doi: 10.1007/s11708-021-0756-x

摘要: Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.

关键词: hydrogel     photocatalysts     energy conversion     environmental treatment    

Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 536-545 doi: 10.1007/s11705-021-2067-5

摘要: Many scientific efforts have been made to penetrate the blood-brain barrier and target glioblastoma cells, but the outcomes have been limited. More attention should be given to local inhibition of recurrence after glioblastoma resection to meet real medical needs. A biodegradable wafer containing the chemotherapeutics carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU) was the only local drug delivery system approved for clinical glioblastoma treatment, but with a prolonged survival time of only two months and frequent side effects. In this study, to improve the sustained release and prolonged therapeutic effect of drugs for inhibiting tumor recurrence after tumor resection, both free BCNU and BCNU- poly (lactic-co-glycolic acid) (the ratio of lactic acid groups to glycolic acid groups is 75/25) nanoparticles were simultaneously loaded into natural extracellular matrix hydrogel from pigskin to prepare BCNU gels. The hydrogel was injected into the resection cavity of a glioblastoma tumor immediately after tumor removal in a fully characterized resection rat model. Free drugs were released instantly to kill the residual tumor cells, while drugs in nanoparticles were continuously released to achieve a continuous and effective inhibition of the residual tumor cells for 30 days. These combined actions effectively restricted tumor growth in rats. Thus, this strategy of local drug implantation and delivery may provide a reliable method to inhibit the recurrence of glioblastoma after tumor resection in vivo.

关键词: BCNU     glioblastoma recurrence     tumor resection     nanoparticles     hydrogel    

Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 954-965 doi: 10.1007/s11705-023-2311-2

摘要: The shortage of freshwater has become a global challenge, and solar-driven interfacial evaporation for desalination is a promising way to alleviate the crisis. To develop highly efficient and environmentally friendly photothermal evaporator, the hydroxyethyl cellulose (HEC)/alkaline lignin (AL)/graphene oxide (GO) hydrogels (CLGs) with remarkable evaporative performance were successfully fabricated by a facile sol–gel method using biomass residues. The influence of AL content on the physicochemical properties of the evaporator was investigated. The increasing content of AL improves the mechanical properties, saturated water content and crosslink density of the hydrogels. The designed materials exhibit outstanding thermal insulation capacity (the thermal conductivity of less than 0.05 W·m–1·K–1) and high light absorption capacity of more than 97%. The solar evaporation efficiency and water evaporation rate of the HEC/64 wt % of AL/GO hydrogels (CLG4) achieve 92.1% and 2.55 kg·m–2·h–1 under 1 sun, respectively. The salt resistance test results reveal that the evaporation rate of the CLG4 can still reach 2.44 kg·m–2·h–1 in 3.5 wt % NaCl solution. The solar evaporation rate of the CLG4 can maintain in the range of 2.45–2.59 kg·m–2·h–1 in five cycles. This low-cost lignin-based photothermal evaporator offers a sustainable strategy for desalination.

关键词: lignin     photothermal     cellulose     desalination     hydrogel    

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 893-905 doi: 10.1007/s11705-022-2290-8

摘要: A novel alginate/poly(acrylic acid/acrylamide) double-network hydrogel composite with silver nanoparticles was successfully fabricated using the sol–gel method. The presence of carboxyl and amide groups in the network structure provided abundant active sites for complexing silver ions, facilitating the in situ reduction and confinement of silver nanoparticles. In batch experiments, the optimal silver loading was 20%, and 5 mmol·L–1 of p-nitrophenol was completely degraded in 113 s with a rate constant value of 4.057 × 10−2 s–1. In the tap water system and simulated seawater system, the degradation time of p-nitrophenol at the same concentration was 261 and 276 s, respectively, with a conversion rate above 99%. In the fixed-bed experiment, the conversion rate remained above 74% after 3 h at a flowing rate of 7 mL·min–1. After 8 cycling tests, the conversion rate remained at 98.7%. Moreover, the catalyst exhibited outstanding performance in the degradation experiment of four typical organic dyes.

关键词: double-network hydrogel     dye degradation     silver nanoparticles     alginate    

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1704-2

A Double-Layer Polysaccharide Hydrogel (DPH) for the Enhanced Intestine-Targeted Oral Delivery of Probiotics

Wen-Can Huang,Wenjie Wang,Wei Wang,Yanan Hao,Changhu Xue,Xiangzhao Mao,

《工程(英文)》 doi: 10.1016/j.eng.2023.05.024

摘要: Transplantation of probiotics to the intestine can positively regulate the gut microbiota, thereby promoting the immune system and treating various diseases. However, the harsh gastrointestinal environment and short retention time in the gastrointestinal tract significantly limit the bioavailability and intestinal colonization of probiotics. Herein, we present a double-layer polysaccharide hydrogel (DPH) in the form of a double-layer structure composed of a carboxymethyl cellulose (CMCL) supramolecular inner layer and a dialdehyde alginate (DAA) cross-linked carboxymethyl chitosan (CMCS) outer layer. This double-layer structure allows DPH to encapsulate and deliver probiotics in a targeted manner within the body. In the stomach, the cage structure of the DPH is closed, and the outer layer absorbs surrounding liquids to form a barrier to protect the probiotics from gastric fluids. In the intestine, the cage structure opens and disintegrates, releasing the probiotics. Thus, DPH endows probiotics with excellent intestine-targeted delivery, improved oral bioavailability, enhanced gastrointestinal tract tolerance, and robust mucoadhesion capacity. The encapsulated probiotics exhibit almost unchanged bioactivity in the gastrointestinal tract before release, as well as improved oral delivery. In particular, probiotics encapsulated by DPH exhibit 100.1 times higher bioavailability and 10.6 times higher mucoadhesion than free probiotics in an animal model 48 h post-treatment. In addition, with a remarkable ability to survive and be retained in the intestine, probiotics encapsulated by DPH show excellent in vitro and in vivo competition with pathogens. Notably, DAA-mediated dynamic crosslinking not only maintains the overall integrity of the hydrogels but also controls the release timing of the probiotics. Thus, it is expected that encapsulated substances (probiotics, proteins, etc.) can be delivered to specific sites of the intestinal tract by means of DPH, by controlling the dynamic covalent crosslinking.

关键词: Polysaccharides     Chitosan     Hydrogels     Oral delivery     Intestine-targeted    

Optimising the oil phases of aluminium hydrogel-stabilised emulsions for stable, safe and efficient vaccine

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 973-984 doi: 10.1007/s11705-021-2123-1

摘要: To increase antibody secretion and dose sparing, squalene-in-water aluminium hydrogel (alum)-stabilised emulsions (ASEs) have been developed, which offer increased surface areas and cellular interactions for higher antigen loading and enhanced immune responses. Nevertheless, the squalene (oil) in previous attempts suffered from limited oxidation resistance, thus, safety and stability were compromised. From a clinical translational perspective, it is imperative to screen the optimal oils for enhanced emulsion adjuvants. Here, because of the varying oleic to linoleic acid ratio, soybean oil, peanut oil, and olive oil were utilised as oil phases in the preparation of aluminium hydrogel-stabilised squalene-in-water emulsions, which were then screened for their stability and immunogenicity. Additionally, the underlying mechanisms of oil phases and emulsion stability were unravelled, which showed that a higher oleic to linoleic acid ratio increased anti-oxidative capabilities but reduced the long-term storage stability owing to the relatively low zeta potential of the prepared droplets. As a result, compared with squalene-in-water ASEs, soybean-in-water ASEs exhibited comparable immune responses and enhanced stability. By optimising the oil phase of the emulsion adjuvants, this work may offer an alternative strategy for safe, stable, and effective emulsion adjuvants.

关键词: pickering emulsion     vaccine adjuvant     alum-stabilised emulsion     oleic to linoleic acid ratio     stability    

基于脱细胞后鱼皮细胞外基质的生物打印水凝胶纺织品用于创面修复 Article

林祥, 张涵, 张慧, 张倬豪, 陈国璞, 赵远锦​​​​​​​

《工程(英文)》 2023年 第25卷 第6期   页码 120-127 doi: 10.1016/j.eng.2022.05.022

摘要:

创面修复具有普遍性、治疗困难、患者众多和医疗负担沉重的特点,一直是临床研究的热点。为了满足特定需求,研究者投入了大量科研力量,致力于开发各种个性化需求和功能的伤口敷料。在这方面,我们提出了一种基于鱼皮脱细胞的细胞外基质(dECM)水凝胶纺织品用于创面修复。鱼源的dECM具有理想的生物相容性,并且通过生物打印技术制备的纺织品在细胞黏附和增殖方面表现出卓越的性能。此外,基于dECM的水凝胶纺织品采用生物打印技术生成,因此具有可调节的多孔结构,使整个纺织品具备良好的透气性。而且,水凝胶骨架上的多孔结构高比表面积使其能够负载多种活性分子,从而提高创面愈合效果。通过体内研究结果,我们证明了这种制备的纺织品负载活性药物分子姜黄素(Cur)和碱性成纤维细胞生长因子(bFGF)能够显著加速慢性创面的修复过程。这些结果表明鱼皮dECM纺织品在创面修复和生物医学工程领域具有潜在的价值。

关键词: 生物打印     鱼皮     细胞外基质     水凝胶     创面修复    

Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity

Evelyn Chalmers, Yi Li, Xuqing Liu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 684-694 doi: 10.1007/s11705-019-1817-0

摘要: This research looks at ways of tailoring and improving the stiffness of polypyrrole hydrogels for use as flexible supercapacitor electrodes. Molecules providing additional cross-linking between polypyrrole chains are added post-polymerisation but before gelation, and are found to increase gel stiffness by up to 600%, with the degree of change dependent on reactant type and proportion. It was also found that addition of phytic acid led to an increase in pseudocapacitive behaviour of the hydrogel, and thus a maximum specific capacitance of 217.07 F·g could be achieved. This is an increase of 140% compared to pristine polypyrrole hydrogels produced by this method.

关键词: supercapacitor     polypyrrole     hydrogel     strengthening     electrochemical    

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 1-14 doi: 10.1007/s11709-019-0514-x

摘要:

In view of China’s development trend of green building and building industrialization, based on the emerging requirements of the structural engineering community, the development and proposition of novel resource-saving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering. This paper provides a state of the art review of China’s cutting-edge research and technologies in steel-concrete composite structures in recent years, including the building engineering, the bridge engineering and the special engineering. This paper summarizes the technical principles and applications of the long-span bi-directional composite structures, the long-span composite transfer structures, the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP) connectors, the steel plate concrete composite (SPCC) strengthen technique, and the innovative composite joints. By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited. The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.

关键词: high-performance composite structure     bi-directional composite     composite transfer     uplift-restricted and slip-permitted connectors     steel plate concrete composite strengthen    

Deep eutectic solvent inclusions for high- composite dielectric elastomers

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 996-1002 doi: 10.1007/s11705-022-2138-2

摘要: Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

关键词: composite materials     deep eutectic solvent     dielectric elastomer     high dielectric constant    

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1518-7

摘要:

• Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

关键词: AZM@GP composite electrode     EAB-biosensor     Water quality early-warning    

Structural optimization of filament wound composite pipes

Roham RAFIEE; Reza SHAHZADI; Hossein SPERESP

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1056-1069 doi: 10.1007/s11709-022-0868-3

摘要: An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines. First, the short-term and long-term design constraints dictated by international standards are identified. Then, proper computational tools are developed for predicting the structural properties of the composite pipes based on the design architecture of layers. The developed computational tools are validated by relying on experimental analysis. Then, an integrated design-optimization process is developed to minimize the price as the main objective, taking into account design requirements and manufacturing limitations as the constraints and treating lay-up sequence, fiber volume fraction, winding angle, and the number of total layers as design variables. The developed method is implemented in various case studies, and the results are presented and discussed.

关键词: composite pipes     optimization     experimental validation     computational modeling     filament winding    

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 623-642 doi: 10.1007/s11709-021-0726-8

摘要: In this study, gradual and sudden reduction methods were combined to simulate a progressive failure in notched composite plates using a macro mechanics approach. Using the presented method, a progressive failure is simulated based on a linear softening law prior to a catastrophic failure, and thereafter, sudden reduction methods are employed for modeling a progressive failure. This combination method significantly reduces the computational cost and is also capable of simultaneously predicting the first and last ply failures (LPFs) in composite plates. The proposed method is intended to predict the first ply failure (FPF), LPF, and dominant failure modes of carbon/epoxy and glass/epoxy notched composite plates. In addition, the effects of mechanical properties and different stacking sequences on the propagation of damage in notched composite plates were studied. The results of the presented method were compared with experimental data previously reported in the literature. By comparing the numerical and experimental data, it is revealed that the proposed method can accurately simulate the failure propagation in notched composite plates at a low computational cost.

关键词: progressive failure     notched composite plate     Hashin failure criterion     macro mechanics approach     finite element method    

标题 作者 时间 类型 操作

Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite

Yan Zhang,Pingqiang Gao,Lin Zhao,Yizhong Chen

期刊论文

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

期刊论文

Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence

期刊论文

Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination

期刊论文

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient

期刊论文

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

期刊论文

A Double-Layer Polysaccharide Hydrogel (DPH) for the Enhanced Intestine-Targeted Oral Delivery of Probiotics

Wen-Can Huang,Wenjie Wang,Wei Wang,Yanan Hao,Changhu Xue,Xiangzhao Mao,

期刊论文

Optimising the oil phases of aluminium hydrogel-stabilised emulsions for stable, safe and efficient vaccine

期刊论文

基于脱细胞后鱼皮细胞外基质的生物打印水凝胶纺织品用于创面修复

林祥, 张涵, 张慧, 张倬豪, 陈国璞, 赵远锦​​​​​​​

期刊论文

Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity

Evelyn Chalmers, Yi Li, Xuqing Liu

期刊论文

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

期刊论文

Deep eutectic solvent inclusions for high- composite dielectric elastomers

期刊论文

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

期刊论文

Structural optimization of filament wound composite pipes

Roham RAFIEE; Reza SHAHZADI; Hossein SPERESP

期刊论文

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

期刊论文